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Featured Application: A first demonstration of a shape annealing algorithm for automatic gener-
ation of DNA origami designs based on defined objectives and constraints.

Abstract: Structural DNA nanotechnology involves the design and self-assembly of DNA-based
nanostructures. As a field, it has progressed at an exponential rate over recent years. The demand
for unique DNA origami nanostructures has driven the development of design tools, but current
CAD tools for structural DNA nanotechnology are limited by requiring users to fully conceptualize a
design for implementation. This article introduces a novel formal approach for routing the single-
stranded scaffold DNA that defines the shape of DNA origami nanostructures. This approach for
automated scaffold routing broadens the design space and generates complex multilayer DNA
origami designs in an optimally driven way, based on a set of constraints and desired features. This
technique computes unique designs of DNA origami assemblies by utilizing shape annealing, which
is an integration of shape grammars and the simulated annealing algorithm. The results presented in
this article illustrate the potential of the technique to code desired features into DNA nanostructures.

Keywords: shape annealing; DNA origami; computer-aided design (CAD); automated generative
design; structural DNA nanotechnology

1. Introduction

Structural DNA nanotechnology enables the creation of complex polyhedral nanos-
tructures due to the predictability of Watson–Crick base-pairing, wherein adenine (A) and
guanine (G) form hydrogen bonds with thymine (T) and cytosine (C) [1–3]. Due to the pro-
grammable binding of nucleobases, the field of DNA nanotechnology offers an unmatched
ability to control the formation of arbitrarily shaped and biocompatible DNA nanostruc-
tures [4]. The DNA origami technique is a self-assembly method wherein hundreds of
short “staple” oligonucleotides direct the folding of a long single-stranded DNA (ssDNA)
“scaffold” to form multilayer and wireframe DNA assemblies (Figure 1) [2,5]. Recently,
DNA origami has served to create functional applications such as multifluorophore beacon
sensing platforms [6], cargo-sorting robots [7], and drug delivery vehicles [8].

With increasing functional applications, the research community has pioneered inno-
vative tools to facilitate the design process. CaDNAno is a popular computer-aided design
(CAD) tool that revolutionized the design process, providing a graphical-user-interface
(GUI) and computationally inexpensive method to manually create DNA origami designs
from the bottom-up [9]. CaDNAno designs can be built using a square or honeycomb
lattice architecture, providing guidance on the available and optimal crossover locations as
well as an auto-stapling function. While caDNAno has been so pivotal to the growth of the
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field, it heavily relies on the expertise of the designer, who must first conceptualize each
design before manually implementing the concept. The challenges of manual design can
incentivize designers to limit their structures to the simplest geometries. More critically,
the manual nature of the process makes it difficult to implement and therefore to compare
a range of possible designs to address a given application.

Figure 1. DNA origami folding method: (a) DNA origami nanostructures are assembled from the directed folding of the
scaffold strand (blue) by staple strands (multicolored); (b) Individual helical domains are connected by interhelix crossovers;
(c) These interhelix crossovers are represented as straight vertical segments; (d) CaDNAno editing is done using a simple
2D visualization of a DNA origami nanostructure that folds into a 3D model; (e) These 3D DNA origami models represent
the DNA double helix as a solid cylinder and generally follow a honeycomb (top) or square (bottom) lattice architecture
(adapted from Wang et al. [10]).

Automated tools have the potential to accelerate the design process and broaden the de-
sign space. One powerful approach demonstrated by the tools vHelix [11], DAEDALUS [12],
PERDIX [13], and TALOS [14] is the automated generation of nanostructure designs from
3D polyhedral meshes. These tools compute the scaffold routing and staple sequences to
create wireframe DNA origami designs from input meshes. MagicDNA is a semi-automated
design tool that computes scaffold routing and staple generation from a line model with
detailed dimensions of the final design as input [15]. MagicDNA enables an iterative
computer-aided engineering (CAE) approach to the design of DNA origami. Thus, current
automated tools have enabled automation of key portions of the design process, but they
are limited to an approach (top-down) that requires a designer to fully conceptualize the
structure. However, it is important to note that the source of the design comes entirely from
the user.

Currently, DNA origami design optimization is performed iteratively by human
designers, where even veteran designers often get stuck in an infinite iterative design loop
in search of the ideal design [16]. Here, we present a novel, formal approach for optimizing
the design process for DNA origami through automation. This approach addresses current
limitations by computing optimal scaffold routing with only a set of constraints and desired
configurations. This is achieved through shape annealing [17], which is an integration of
the simulated annealing algorithm, a stochastic optimization technique [18], and shape
grammars, which are a formal rule-based generative design method that concisely defines
relationships between geometric shapes [19]. Shape annealing generates optimally directed
shapes by controlling the selection and implementation of shape transformation rules to
evolve a starting shape as the algorithm progresses.

In our first demonstration of this approach, we start with a 3D polyhedral mesh of
arbitrary size as input and our algorithm explores the design space to create a variety of un-
foreseen and legal designs. The 3D polyhedral mesh is merely one example of a constraint,
but it is not a requirement for implementing the shape annealing algorithm. This formal ap-
proach therefore takes a hybrid top-down and bottom-up direction to nanostructure design.
In this work, this approach creates unique routing patterns of the scaffold that, as an initial
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demonstration in this paper’s implementation, are constrained to the caDNAno honeycomb
lattice architecture while designing filling and coating applications. As a note, we refer to
“legal” operations as those that are permissible in caDNAno without overriding software
recommendations. In this simple demonstration, the shape annealing algorithm enables
the automated design of multilayer origami for arbitrary shapes by providing the ability
for designers to code for desired features of DNA nanostructures. In this paper we show
that shape annealing can be used to design DNA origami by filling or coating polyhedral
meshes. The filling application provides a general procedure for filling arbitrary multilayer
geometries, while the coating application provides an automated method for creating
hollow structures that could be used for casting [20] and cargo-carrying [8] applications.

2. Methods
2.1. Shape Annealing: Optimization with Shape Grammars

The sequencing of constrained DNA strands to meet design goals and constraints
is a complex problem, and such layout problems have been shown to have multi-modal
and discontinuous spaces [21]. Thus, properties of discrete configuration generation and
stochastic search are needed to develop a new algorithm for bottom-up DNA origami de-
sign. A method called shape annealing, which was introduced by Cagan and Mitchell [17],
utilizes these characteristics.

2.2. Optimization by Simulated Annealing

Shape annealing is a variation of simulated annealing which is a robust and stochastic
technique that statistically approaches a global optimum among numerous local optima by
accepting worse solutions early on, there-by jumping out of local optima [18]. Simulated
annealing (SA), developed by Kirkpatrick et al., can optimize parameters for an arbitrary
model and ensure a good solution within sufficient time [18]. SA is a stochastic optimiza-
tion technique used in many combinatorial optimization problems such as truss design
optimization [22] and chip floor planning [23]. The SA algorithm is based on Metropolis’s
Monte-Carlo technique, called the Metropolis algorithm [24]. The algorithm randomly
samples a feasible solution, s1, and the energy at that solution, Es1 , is calculated. Another
random, feasible solution, s2, is sampled and the energy, Es2 , is calculated. In the case of
objective minimization, s2 replaces s1 if Es2 < Es1 , or if Es2 ≥ Es1 with a probability, Paccept,
as a function of temperature, T:

Paccept = exp−
(

Es2 − Es1

T

)
. (1)

If a generated random number between 0 and 1 is less than Paccept, then s2 is accepted;
if not, s1 is not replaced. The higher the temperature, the higher the probability of accepting
a worse solution. Alternatively, at set temperatures, the higher the difference between the
energy states, the lower the probability of accepting worse solutions. The algorithm usually
runs for several iterations (or mutations) at a set temperature value until convergence or
a set number of iterations (or limit) is reached and then the temperature is reduced. The
search process continues until convergence or equilibrium is reached, or the temperature
reaches zero. The algorithm is analogous to the annealing process of metals, where the
energy can be substituted for an objective function and the temperature is a multiplier
that adjusts the probability of accepting a worse solution that dynamically changes as
the algorithm runs. An appropriate cooling schedule must be chosen to reduce the tem-
perature. Although a specific cooling schedule that theoretically satisfies convergence
is one that follows a logarithmic trend, it would exponentially increase the search time
for larger problems. The current work uses a geometric cooling schedule that follows an
exponential trend:

T := αT, (2)
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where α is between 0 and 1. Although this schedule does not guarantee convergence to the
global optimum, it searches for a good solution in sufficient time. The temperature contin-
ues to be reduced, with the algorithm running for several iterations per temperature, until
a temperature of zero is reached. It is important to note that there are “adaptive” annealing
schedules that adjust the temperature reduction based on local performance [25,26]. How-
ever, for DNA origami applications in this work, the simple geometric schedule performs
sufficiently well.

2.3. Shape Grammars

Simulated annealing requires neighborhood moves for each variation, which is the
replacement of the current solution by the test solution. Shape annealing utilizes simulated
annealing to control the search process and defines the move set through a formal language
of shape known as shape grammars. Shape grammars, introduced by Stiny, provides an
effective way to concisely encode knowledge of how to legally assemble various artifact
forms together through a set of shape transformation rules that are applied iteratively
from a starting shape to generate a different, evolving shape [19]. These geometric shapes
are typically 2D or 3D. Spatial transformations of translation, rotation, reflection, and
scale, and boolean operations of union, intersection, and subtraction can be achieved using
shape grammars. Generally, each shape transformation rule specifies a condition and an
associated action. In addition to defining a language of form, shape grammars have been
utilized for functional designs such as MEMS resonators [27] and roof trusses [28]. Thus,
with shape annealing, geometric forms are generated based on the language of a shape
grammar to fulfill goals and constraints through stochastic search.

In the original introduction of shape annealing, a snake-like grammar was defined
to pack a 2D volume (Figure 2). The insight of this paper is that the sequencing of DNA
has a similar snake-like property. As such, in this work, we introduce the shape annealing
methods for the design of DNA origami, providing a new generative CAD hybrid top-
down and bottom-up approach that results in novel DNA sequences that fulfill a functional
need without requiring a prior configuration, or envisioning of the solution.

Figure 2. Snake-like shape grammars of half-hexagons: (a) Four simple shape grammar rules
consisting of half-hexagons with a long base of one unit and a short base of one-half unit. Rule 4
is created to complete the final generated shape; (b) Final generated shape based on the snake-like
shape grammar constrained to a 5 × 5 unit box with the condition of no pieces overlapping. The fill
pattern indicated the applied rule, where a light fill points to rule 1, a medium fill points to rule 2
and a dense fill points to rule 3 (adapted from Cagan [29]).

Since DNA origami is fundamentally based on the path of the scaffold that is then
cinched with staple strands, the shape grammars in Figure 3 encode knowledge of how
to legally assemble a continuous scaffold strand constrained to the caDNAno honeycomb
lattice architecture. The grammar ensures legal designs by incorporating the dimensions of
a double-stranded DNA (dsDNA) with a helical diameter of 2 nm cut into an axial length
of 2.38 nm (axial rise of 0.34 nm per base). According to the mathematics of the honeycomb
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lattice architecture, 7 bases is approximately 240 degrees. Therefore, a central helix can
address all three nearest neighbors along its length by placing crossovers at multiples of
7 base pairs [5,9].

Figure 3. Shape grammar example for scaffold routing when constrained to a honeycomb lattice architecture. The scaffold
is sectioned into 7-base helical segments with the physical dimension of the dsDNA right-handed double helix. The blue
helix segment is directed in the −z direction (5′ end to 3′ end) while the red helix segment is directed in the +z direction
(3′ end to 5′ end): (a) Rule 1 is for generating helix segments that crossover to a neighboring helix (0◦, 120◦, and 240◦ for the
blue helix, in order; −180◦, 60◦, and 300◦ for the red helix, in order). Illustrated is a crossover at 120◦ from the blue helix
segment; (b) Rule 2 is for extending the helix by a segment. Illustrated is an extension at 120◦ from the blue helix segment to
create a longer helix ending at 240◦; (c) Rule 3 is for removing a 7-base helical segment to prevent rapid convergence on an
inferior solution. Illustrated is an example of rule 3, which here is the reversal of rule 1 by removing the red helix segment
at 300◦ which leaves the blue helix segment ending at 240◦.

The shape grammar for the generated designs generalizes the scaffold into short
helical 7 base pair (bp) segments with physical dimensions of the dsDNA double helix,
where potential crossovers are located at the start and end of the segment. The grammar
further represents short helical segments running clockwise in the −z direction as blue,
and segments running counterclockwise in the +z direction as red. The nearest neighbors
of the blue and red helices are at a −180◦ angle difference, where potential crossovers for
the blue helix are in the order of 0◦, 120◦, and 240◦. The arrow labels indicate the potential
crossover locations and therefore where a rule can be applied along the helix. The grammar
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consists of two addition rules, which allow scaffold growth based on the honeycomb lattice
constraint, and a reversal rule, which removes a segment for both additive rules. Although
there are several possible crossover locations along the scaffold, for simplicity, the grammar
restricts this to the three positions which provide nearest neighbor crossover positions for
the honeycomb lattice. This restriction, which generates legal honeycomb designs, can,
however, be relaxed in the future to create more complex lattice designs such as hybrid
square and honeycomb architectures.

2.4. Shape Annealing

Shape annealing utilizes the simulated annealing algorithm to control the application
of randomly selected shape rules at a given state. The pseudocode in Algorithm 1 provides a
more detailed description of how the shape annealing algorithm works. Figure 4 illustrates
examples of the shape annealing algorithm for scaffold routing when constrained to a
honeycomb lattice architecture. A feasible shape rule is selected from the language and
applied to the current design state. If the new design complies with the defined constraints,
it is sent to the Metropolis algorithm, where the new state is compared to the old state. If
the new state complies with the desired design features, it is accepted; if not, the old state
is retained. In this current work, the grammar has a reversal rule (Figure 3c) applied to
rules 1 and 2 (Figure 3a,b) to prevent rapid convergence on an inferior solution by enabling
the algorithm to back out of local solutions. The rules in Figure 3 define the design space
used to create DNA origami designs consisting of a continuous scaffold strand.

Figure 4. Shape annealing algorithm for scaffold routing when constrained to a honeycomb lattice architecture. Key steps
are initializing the temperature, verifying desired goal with metropolis function, checking whether the limit and equilibrium
has been reached, and reducing the temperature. Key parameters are the temperature (T), mutations (n), limit, and reduction
factor (α): (a) General flowchart of the shape annealing algorithm.; (b) Two examples of rule applications based on objective
minimization. The top example shows the shape rule 3 (reversal rule) accepted with a decrease in objective function. The
bottom example shows the shape rule 1 (additive rule) accepted with a probability due to an increase in objective function.
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In the shape annealing algorithm, the number of outer loop iterations, which is
determined by the reduction factor (α), the number of inner loop iterations, which is the
mutations (n), the initial temperature before the algorithm proceeds (T), and the limit,
which is the number of accepted shapes within the inner loop, must be determined to
ensure convergence on good solutions. By adjusting these key parameters, the shape
annealing algorithm will generate unique shapes. Figure 4a displays a generic flowchart
of the shape annealing algorithm, while Figure 4b displays examples of rule applications
with objective function calculations.

Algorithm 1 Shape annealing algorithm

1: initialize T, limit, n, α

2: generate initial_shape
3: state = evaluate(initial_shape)
4: procedure Shape Anneal(state, T, limit, n, α) t→ key parameters
5: while T > 0 do
6: success=0, i =0
7: for i to n do t→mutations=n
8: prev_state=state
9: new_shape=random_rule()

10: if new_shape complies with constraints then
11: new_state=evaluate(new_shape)
12: test = metropolis(new_state, prev_state, T)
13: if test then
14: state=new_state
15: success += 1
16: end if
17: end if
18: if success>limit then
19: break
20: end if
21: end for
22: if success=0 then t→ equilibrium
23: break
24: end if
25: T = T*α

26: end while
27: end procedure

2.5. Coarse-Grain Simulations

OxDNA is a coarse-grain nucleotide-level DNA model that has proven to be excep-
tionally apt at capturing the structural, mechanical, and thermodynamic properties of
DNA [30,31]. As an extension, oxDNA can realistically model the properties of larger DNA
origami structures and is widely used to study such systems [32–35]. Due to this ability
to model DNA origami structures and to correctly predict stability and structural config-
uration, oxDNA simulations are used in this study to evaluate the validity of generated
structures. In addition, simulations provide the ability to analyze the resulting structure
with much greater detail than possible through experimental imaging approaches. In
this study, simulations of the generated designs follow a very typical relaxation approach
that is outlined by Doye et al. consisting of a minimization step, in which overlapping
nucleotide volumes are resolved, followed by a relaxation step, in which overextended
bonds are resolved and the structures are allowed to take on a relaxed configuration [36].
The relaxation step for these simulations run for 106 steps once final designs are derived.
This 2-step relaxation sequence is followed by a 106 step regular molecular dynamics simu-
lation with no added forces or modified potentials used for root mean-square fluctuations
(RMSF) calculations. All simulations are carried out at room temperature (295 K) with
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a 15.15 fs time step (0.005 in simulation units) with all other parameters following the
recommendations outlined by Doye et al. [36].

3. Applications

With arbitrary 3D triangular meshes as input, our shape annealing platform generates
filled or coated structures. While there are automated tools for converting triangular
meshes into DNA origami designs, these tools are limited to wireframe structures [11–14].
In this paper, the shape annealing framework imports three distinct triangular meshes as
input for the generation of filled and coated multilayer DNA origami designs. After the
shapes are generated with their respective filling or coating algorithm, they are converted
to caDNAno JSON files using a custom scadnano Python script [37] and then auto-stapled
using the caDNAno auto-stapling function. After auto-stapling, the caDNAno JSON files
are converted to PDB files using TacoxDNA for visualization [38]. After visualization, the
caDNAno JSON files are then converted to oxDNA topology and configuration files using
TacoxDNA. The oxDNA topology and configuration files are then imported to oxDNA
to evaluate structural validation. The results from oxDNA are analyzed using the RMSF
scripts and visualized in oxView, which are both developed by Poppleton et al. [39]. The
last frame of the oxDNA simulation is then converted to PDB using TacoxDNA.

3.1. Filling Application

The filling application presents a simple demonstration of the shape annealing algo-
rithm. It is particularly useful for generating solid designs under conditions of complex
bounding shapes because segments can only be generated within the confines of a defined
geometry. One of the metrics defined to evaluate the filling of an arbitrary geometry is
packing density, where the goal is to maximize the number of helices within the geometry.
Once these arbitrary geometries become more complex, path direction should be incorpo-
rated, where the helices grow towards the surface and thus the corners of the geometry.
The filling application accounts for this by presenting an optimization problem with the
goal of minimizing the distance of the helical segments to the inner surface of the mesh to
generate a scaffold of custom length within an arbitrary geometry. The scaffold, in 7 bp
segments, is assembled based on the shape grammars where no segments can overlap, the
generated segment must fit within the bounds of the defined space, and the shapes are
generated to imitate continuous scaffold length growth. The filling application presents
the case of objective minimization, where s2 replaces s1 if Es2 < Es1 , or if Es2 ≥ Es1 , with a
probability. The objective function is an exponential function:

f(x) = 1.12−x, (3)

where x is the Euclidian distance from the inner surface of the mesh to the top of each helical
segment. This objective function was selected since it exponentially decreases distances
near the surface of the polyhedral mesh. An objective function with a base value much
greater than one acts more like a step-function and is too restrictive. However, an objective
function with a base value only slightly greater than one is not as restrictive. Thus, 1.12 is
an appropriate base value for this function. As a demonstration of the method’s capability
to fill input triangular meshes, we present three examples of the filling application using
a tetrahedron, a snub cuboctahedron (snub cube), and a version of the Stanford bunny
(Figure 5).
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Figure 5. Input triangular mesh with a scale bar of 10 nm in length: (a) Tetrahedron mesh with dimensions for the filling
application of the axis aligned bounding box of 47.6 nm in length, 55.0 nm in width, and 45.9 nm in height. This mesh has a
volume of 19,600 nm3; (b) Snub cuboctahedron mesh with the axis aligned bounding box of 35.1 nm in length, 36.0 nm
in width, and 35.8 nm in height. This mesh has a volume of 20,000 nm3; (c) Stanford bunny mesh with the axis aligned
bounding box of 54.1 nm in length, 43.3 nm in width, and 53.6 nm in height. This mesh has a volume of 34,200 nm3.

3.2. Coating Application

Due to its complexity and rigidity, DNA nanostructures can be used as a template
to assemble inorganic materials in defined patterns [40]. Sun et al. illustrated the design
of DNA into mechanically stiff molds to cast and synthesize metallic nanoparticles into
desired 3D configurations [20]. These 3D molds, originally designed through caDNAno,
encapsulate a nucleating gold seed that grows to fill up the entire volume, thus reproducing
its 3D shape. Although the wireframe design tools automate the design of rigid wireframe-
based DNA nanostructures, current approaches have limited options for controlling the
mechanical properties of automated structures. A multilayer DNA origami approach, as
noted by Sun et al., provides broad control over the mechanical properties of the mold,
which are critical to casting applications [20]. However, even though our framework was
developed to promote filling, it can be applied to coat the surface of arbitrary geometries
with a scaffold of custom length to create solid DNA molds; thus, providing the automated
generation of multilayer DNA origami based on 3D polyhedral meshes. The optimization
problem in this example minimizes the distance of helical segments to the outer surface of
the input mesh. The scaffold, in 7 bp segments, is assembled based on the shape grammars
where no segments can overlap, and the shapes are generated to imitate continuous
scaffold length growth. The coating application presents the case of objective minimization
(Section 2.2). The objective function is:

f(x) = 1.19x, (4)

where x is the Euclidean distance from the outer surface of the mesh to the top of each
helical segment. The objective function finds the minimum perpendicular distance to the
surface of the mesh. This objective function was selected because it gradually decreases
distances closer to the outer surface of the polyhedral mesh. An objective function with a
base value much closer to one generates designs that are not as tightly coated. However,
an objective function with a base value close to two generates designs that tightly coats
the surface of the mesh. Thus, 1.19 is an appropriate base value for this function. As a
demonstration of the method’s capability to coat the surface of input meshes, we present
three examples of the coating application using a tetrahedron, a snub cube, and a version
of the Stanford bunny (Table 1).
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Table 1. Dimensions of input triangular mesh for coating application.

Mesh Length [nm] Width [nm] Height [nm] Volume [nm3]

tetrahedron 21.7 25.0 20.4 1840
snub cube 20.6 21.2 21.1 4010

Stanford bunny 32.4 26.0 32.2 7380

4. Results

As the simulated annealing algorithm can converge to a local minimum due to its
stochastic nature, the algorithm is typically run several times and the best generated
solution is selected [23]. In this work the algorithm is run in sets of 10, with the best solution
of each set presented as the selected solution. Here, the filling and coating algorithms are
run in 10 batches of 10 (100 times total per mesh) where the best generated shape is selected
per batch, resulting in 10 best shapes out of 100 that are evaluated as the goodness of the
algorithm. Since the metric of success for the filling application is packing density, 10 shapes
with the highest number of helical segments per batch are selected. Table 2 illustrates the
mean and standard deviation of the total number of helical segments over the 100 runs and
the 10 top runs per batch for the filling application. For the coating application, the metric
of success is how tightly the scaffold wraps around the mesh. Currently, the tightness
is assessed by selecting designs with a higher number of helical segments close to the
mesh. Table 3 illustrates the mean and standard deviation of the total number of helical
segments close to the mesh over the 100 runs and the 10 top runs per batch for the coating
application. Figure 6 illustrates three out of 10 of the best shapes generated with the shape
annealing algorithm per input mesh for the filling application. The shapes generated from
the filling application share the same optimization parameters; this is also the same for
the coating application (Table 4). Figure 7 illustrates the relaxed configurations for the
filling application after structural validation through oxDNA. Figure 8 illustrates the root
mean-square fluctuations (RMSF) of the structures generated from oxDNA for the filling
application with the total energy over the course of the relaxation simulation plotted in
Figure 9. Figure 10 illustrates three out of 10 of the best shapes generated with the shape
annealing algorithm per input mesh for the coating application. Figures 11–13 provide
a visualization of how the scaffold grows during the annealing schedule for the filling
application, which are generated through Mayavi, a 3D visualization Python package [41].
The total number of iterations until convergence per mesh is divided equally into 50 steps
and an image is generated at every step.

Table 2. Average and standard deviation of total number of helical segments for filling application.

Mesh Average [Segments] Std. Dev.

tetrahedron
total 875 159
top 1073 35

snub cube
total 1076 135
top 1242 36

Stanford bunny total 1540 408
top 1981 84

Table 3. Average and standard deviation of total number of helical segments close to mesh for coat-
ing application.

Mesh Average [Segments] Std. Dev.

tetrahedron
total 340 160
top 5 48

snub cube
total 858 256
top 1134 54

Stanford bunny total 819 222
top 1086 81
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Figure 6. Isometric view of three of the best shapes generated per mesh with shape annealing
algorithm for the filling application: (a) Structures generated with the tetrahedron mesh as the
outer bounds of the design space. Each structure, from left to right, has a total length of 7595 bp,
7784 bp, and 7728 bp; (b) Structures generated with the snub cube mesh as the outer bounds of the
design space. Each structure, from left to right, has a total length of 9275 bp, 8484 bp, and 8582 bp;
(c) Structures generated with the Stanford bunny mesh as the outer bounds of the design space. Each
structure, from left to right, has a total length of 14,595 bp, 13,531 bp, and 14,105 bp.

Table 4. Shape annealing optimization parameters.

Application Temperature (T) Limit α Mutations (n)

filling 80.00 35 0.99 310
coating 90.00 35 0.98 310

Figure 7. Cont.
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Figure 7. Isometric view of fully relaxed configuration for filling application from oxDNA simulations (from Figure 6):
(a) OxDNA 3D structure with the tetrahedron as the outer bounds of the design space. Each configuration, from left to right,
has a total length of 7595 bp, 7784 bp, and 7728 bp; (b) OxDNA 3D structure with the snub cube mesh as the outer bounds
of the design space. Each structure, from left to right, has a total length of 9275 bp, 8484 bp, and 8582 bp; (c) OxDNA 3D
structure with the Stanford bunny mesh as the outer bounds of the design space. Each configuration, from left to right, has
a total length of 14,595 bp, 13,531 bp, and 14,105 bp.

Figure 8. RMSF of structures generated with filling application from Figure 6. The RMSFs are calculated relative to the
average configurations generated over the entire trajectory. The images illustrate the patterns appearing in the RMSF
calculations using a colormap with a smooth transition from a cool to warm color: (a) RMSF pattern for tetrahedron as the
outer bounds of the design space. Each configuration, from left to right, has a total length of 7595 bp, 7784 bp, and 7728 bp;
(b) RMSF pattern for snub cube mesh as the outer bounds of the design space. Each structure, from left to right, has a total
length of 9275 bp, 8484 bp, and 8582 bp; (c) RMSF pattern for Stanford bunny mesh as the outer bounds of the design space.
Each configuration, from left to right, has a total length of 14,595 bp, 13,531 bp, and 14,105 bp.
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Figure 9. Total system energy measurements (converted to pN nm from simulation units) over the course of the oxDNA
relaxation step, corresponding to the structures in Figures 7 and 8: (a) Plots for structures with the tetrahedron mesh as the
outer bounds of the design space; (b) Plots for structures with the snub cube mesh as the outer bounds of the design space;
(c) Plots for structures with the Stanford bunny mesh as the outer bounds of the design space. The plateauing of the total
energy of the systems as it progresses through the relaxation simulation is an indication that equilibrium has been achieved.
More anisotropic shapes with narrow features took longer to reach equilibrium.
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Figure 10. Isometric view of the best shapes generated with shape annealing algorithm for the coating application: (a) Slice
view of structures generated with the tetrahedron mesh as the inner bounds of the design space with a total length of
12,901 bp; (b) Slice view of structures generated with the snub cube mesh as the inner bounds of the design space with a
total length of 15,729 bp; (c) Slice view of structures generated with the Stanford bunny mesh as the inner bounds of the
design space with a total length of 19,285 bp.

Figure 11. Scaffold growth visualization using a blue color map for right tetrahedron in Figure 6a with a total length of
7728 bp, where the scaffold is represented as cylinders. The total iteration of the shape annealing schedule is divided equally
into 50 steps, where an image is generated at each step. The blue color map starts from a light blue tint, which represents
the beginning of the scaffold, to dark blue tint, which represents the end of the scaffold. Below each image is the iteration
number during the annealing schedule. The transparent red cylinders signify the application of the reversal rule.
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Figure 12. Scaffold growth visualization using blue color map for middle snub cube in Figure 6b with a total length of
8484 bp, where the scaffold is represented as cylinders. The total iteration of the shape annealing schedule is divided equally
into 50 steps, where an image is generated at each step. The blue color map starts from a light blue tint, which represents
the beginning of the scaffold, to dark blue tint, which represents the end of the scaffold. Below each image is the iteration
number during the annealing schedule. The transparent red cylinders signify the application of the reversal rule.

Figure 13. Scaffold growth visualization using blue color map for right Stanford bunny in Figure 6c with a total length of
14,405 bp, where the scaffold is represented as cylinders. The total iteration of the shape annealing schedule is divided
equally into 50 steps, where an image is generated at each step. The blue color map starts from a light blue tint, which
represents the beginning of the scaffold, to dark blue tint, which represents the end of the scaffold. Below each image is the
iteration number during the annealing schedule. The transparent red cylinders signify the application of the reversal rule.
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5. Discussion

Figure 6 shows that the proposed framework is capable of filling arbitrary shapes,
particularly complex geometries such as the Stanford bunny, with high range of possible
scaffold designs. The helical segments were able to reach the ears of the Stanford bunny,
which are much further from the center of mass. Therefore, a larger design space lets the
algorithm explore deeper corners of complex structures with the scaffold, even within
constricted spaces whose narrowest dimensions are only two or three times as large as
the diameter of dsDNA. The filling application is also able to replicate the shape of the
tetrahedron and snub cube, with sharp and soft corners, respectively. The shape generated
from the tetrahedron clearly demonstrates that the filling application can generate solid
DNA origami designs with varying cross-sections. As observed in Table 2 for the filling
application, the total number of helical segments averaged over all 100 iterations is lower
than the average of the 10 top results. While the standard deviation of the total number of
helical segments over all 100 iterations is much higher than the standard deviation for the
10 top results. Due to the stochastic nature of the algorithm, there is high variation among
consecutive runs, as the algorithm can still get stuck in a local optimum near the global
optimum. However, the best solutions are more tightly converged to a higher quality, even
though the topology still varies.

One way to drive coating behavior is to incentivize the minimization of the distance
of helical segments to the surface of a polyhedral mesh through the objective function.
Figure 10 illustrates the coating of different polyhedral meshes, and this demonstrates the
adaptability of the shape annealing algorithm in formalizing different types of constraints.
This application is the first step to realizing the articulation of a variety of desired features.
While the current coating application generates designs with limited coverage, alternative
objective functions could lead to better coating. In Table 3, the number of helical segments
close to the mesh averaged over all 100 iterations is much lower than the 10 top results.
While the standard deviation over all 100 iterations of the number of helical segments close
to the mesh is much higher than the 10 top results. Figure 10 illustrates the stochastic
nature of the scaffold routing pattern, which does not conform to the typical routing of a
human designer where there is typically a seam near the middle of the 2D drawing, as seen
in Figure 1d.

Figures 11–13 illustrate how the shapes generated by the shape annealing algorithm
evolve into their final configuration. As illustrated in the higher iteration numbers in
Figures 11–13, as the shape annealing algorithm approaches equilibrium, fewer shape
rules with worse solutions are accepted. As observed, the final configuration is highly
dependent on the initial path generated and tweaking the shape annealing parameters,
which pose as the serial number for each application, changes the characteristics of the
final shape (Table 3). At the start of the schedule, most generated configurations are better
than the previous, thus most new shapes are accepted. If an appropriate initial path is not
generated, the algorithm will not be able to effectively coat or fill a geometry, resulting in
the large range of solutions per batch.

Simulation results for all structures are depicted in Figures 7–9. It is clear from the
observed plateauing of the energy in Figure 9 that the relaxation simulation length is more
than appropriate. This is not surprising as the structures require minimal component
translation or rotation to reach a relaxed state from their initial conformation. The most
common deviations from the intended shapes seen in the final relaxed conformations are
fraying strands that occur at the surfaces of the structures. This fraying occurs across all
generated structures and, in general, is a result of a lack of sufficient crossovers required
to hold the strands together within these regions. This similarly explains other events
where a lack of sufficient crossovers results in a fracture or similar structural failures, such
as the fracture that can be seen in Figure 7c. Structural errors due to low local crossover
densities are more likely to occur in regions with reduced number of neighboring helixes
and in regions with reduced helical lengths. In other words, they are more likely to occur
in regions with a reduced number of possible crossover positions. Therefore, surface
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fraying events are more likely to occur than fractures and fractures are more likely to
occur at points of reduced cross-sectional area. Thus, small details, such as the ears of the
Stanford bunny or the corners of a tetrahedron, which have both traits, are particularly
likely to unfold. However, it should be emphasized that this issue is not exclusive to
these generated shapes, as a low number of possible crossover positions make it difficult
create structurally sound small details within a structure regardless of design approach.
The filled structures largely maintain their intended shape and, due to the high stability
of the honeycomb lattice, they experience no noticeable twist or large deformations in
solid regions. Furthermore, given the relatively low time and monetary requirements
to characterize structures using simulations, designs with significant fraying or major
structural defects can be quickly detected and discarded. RMSF data for the structures
remains largely unsurprising. There appears to be a general increase of RMSF magnitude
towards the outer edges of the structure that is characteristic of DNA structures due to
the inherent flexibility of the material and the decrease in structural support towards the
surfaces. RMSF values are also maximum for the frayed strands which can be characterized
as undergoing mostly free Brownian motion.

Future work will focus on how to better articulate the algorithm for coating arbitrary
geometries. It would be interesting to apply more constraints, such as an outer mesh, for the
coating application in order to automate the scaffold routing of DNA origami molds with
tunable and uniform thickness. We will also explore other objective functions or constraints
to address long standing challenges in the field of DNA origami design, such as limited
knowledge in design-property relationships to decrease the design-iteration loop, increase
design stability, and increase the yield in DNA origami nanostructures [16]. For example,
Ke et al. developed design rules empirically to increase the yield in multilayer DNA
origami assemblies, which could be incorporated into our shape annealing platform in the
future [42]. In addition to addressing long-standing challenges in the field of DNA origami
design, since our current work considers the scaffold as linear, it would be interesting to
unite the beginning and end of the scaffold to generate a circular strand from the algorithm.
Furthermore, since the optimization of scaffold growth for desired features can be applied
to other methods, areas of future work also include exploring other algorithms to better
achieve desired goals. For example, Yogov et al. applied the genetic algorithm [43], which
mimics biological evolution, to the design of continuous 3D load-supporting structures to
achieve desired goals [44].

6. Conclusions

We have introduced shape annealing as a robust method to control the generation of
helical segments. Using shape grammars based on optimally directed scaffold patterns,
we demonstrate a filling and coating application. This formal approach addresses the
limitations of top-down automated design through shape grammars coupled with opti-
mization strategies. It performs parameterized design to conceptualize multilayer DNA
origami designs of complex bounding geometries. By exploiting DNA’s predictable and
programmable characteristics, the scaffold can be routed in unpredictable ways through
automation, which significantly expands the design space that can be considered.
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