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ABSTRACT 
 
In recent years, the field of structural DNA nanotechnology 

has advanced rapidly due to transformative design tools. 
Although these tools have been revolutionary, they still bear one 
overall limitation of requiring users to fully conceptualize their 
designs before designing. Recently, a simple computational 
casting technique was developed using generative optimization 
strategies to automate the design of DNA origami 
nanostructures. This approach employs a shape annealing 
algorithm, which creates a formal language of honeycomb DNA 
origami nanostructures with shape grammars and drives designs 
from the language towards a desired configuration using 
simulated annealing. This initial demonstration of the approach 
can generate novel scaffold routing schemes for creating solid 
or hollow structures constrained by boundaries of polyhedral 
meshes. The results from the initial approach, particularly from 
the hollow structures, reveal a challenging design space. This 
simple technique generates novel scaffold routing schemes that 
do not replicate the overall polyhedral mesh shape and is limited 
in its ability of controlling scaffold path exploration in the design 
space. This paper demonstrates an approach for varying 
effective wall thickness and improving quality of polyhedral 
mesh coverage for hollow structures that can be tuned and 
optimized by introducing a more refined computational casting 
technique. We achieve these improvements through changes in 
the simulated annealing algorithm by adding a Hustin move set 
algorithm that dynamically adjusts the performance of the 
overall design and redefining how these hollow designs are 
articulated. The results in this work illustrate how the shape 
annealing algorithm can navigate a challenging design space to 
generate effective hollow designs. 

 
Keywords: design optimization, generative design, micro 

and nano systems design and synthesis of, biomaterials, design 
automation, structural DNA nanotechnology, and DNA origami 

NOMENCLATURE 
bp  base pair 
f(x)  objective function 

       M  mutations or iterations 
L  limit 
T  temperature 
T!  previous temperature 
T"  initial temperature 
𝛼  alpha (reduction factor) 
r  shape rule 
Q#  quality factory for the 𝑟$% shape rule 
n# number of times the 𝑟$% shape rule is called at 	

T! 
s  total number of shape rules 
P",#  initial probability if the 𝑟$% shape rule 
P'  probability multiplier 
prob" initial probability for the Hustin move set 
Q()(*+ total quality factor over all shape rules 
x  minimum perpendicular Euclidean distance  

from the outer wall of input mesh to the center  
of the 7 bp scaffold section 

d  set desired distance from the outer wall of   
input mesh 
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1. INTRODUCTION 
In the nanoworld, there has been an exponential increase in 

the development of tools for the design of structures and 
machines using DNA nanotechnology [1–10]. These approaches 
are based on Watson-Crick base pairing in DNA, wherein 
adenine (A) and guanine (G) pair with thymine (T) and cytosine 
(C) via hydrogen bonds [11–13]. Figure 1 shows a 3D molecular 
representation of a 7-base pair (bp) single helix section of a DNA 
double helix with simplifications where a single helix can be 
represented using ball-and-stick models or cylindrical building 
blocks. By harnessing the programmable binding of nucleobases, 
the users can control the assembly of biomechanical 
nanostructures [14]. The most common method for forming 
complex DNA nanostructures is an approach called DNA 
origami. As shown in Figure 2a, this self-assembly method 
utilizes a long single-stranded DNA (ssDNA), also known as a 
“scaffold”, that is folded and then cinched together with 
hundreds of oligonucleotides, also known as “staples”, to form a 
desired configuration [12,15]. A common scaffold used in the 
field of DNA origami is M13mp18 (M13), which is obtained 
from a bacteriophage and is 7249 bases in length [16]. The DNA 
origami designs can be represented in 2D schematics and 3D 
renderings in which the scaffold and staples are simplified to 
cylinders (Figure 2b). The DNA origami folding method can 
create multilayer or wireframe architectures with a myriad of 
applications including nanosensors [17], nanolithography [18], 
nanomachines [19], and nanocasting [20].  

 
FIGURE 1: REPRESENTATION OF 7 BP SCAFFOLD 
SEGMENT: (TOP) HELIX REPRESENTATION. (BOTTOM) 
SIMPLIFIED REPRESENTATION. 

 
Computational casting is a new approach that uses the shape 

annealing generative algorithm [21] to automate the routing of 
the scaffold strand around or within an input polyhedral mesh, 
resulting in coated-type or solid designs, respectively [22]. The 
shape annealing algorithm uses shape grammars [23] to create a 
language of DNA nanostructures or shape rules that defines the 
path through space, and simulated annealing [24] drives the 
language towards an optimally preferred configuration. This 
technique paves the way for novel design tools in which humans 
are not required to define the scaffold routing for irregular 
multilayer DNA origami nanostructures. By using a complex 
polyhedral mesh as a design boundary, this approach adds a 

multilayer functionality that complements existing automated 
tools for generating 2D and 3D wireframe DNA origami 
nanostructures [3,5–10]. Here, polyhedral mesh refers to a 
simple geometric object. This method is particularly 
groundbreaking in the nanoworld because the generated scaffold 
routes are capable of being optimized for structure and function. 
It is important to note that the polyhedral mesh is merely a 
boundary that is removed after the scaffold is generated.  

 
FIGURE 2: DNA ORIGAMI SELF-ASSEMBLY METHOD: (A) 
SCAFFOLD FOLDING (B) DNA ORIGAMI NANOSTRUCTURE 
DESIGN VISUALIZATION.  

 
In this work we address the quality and thickness of 

generated designs using a refined version of our computational 
casting technique to route the scaffold around a tetrahedral mesh 
(Figure 3). This has not been demonstrated in prior work. The 
refined technique demonstrates that the objective function from 
the simulated annealing algorithm can tune the mean effective 
thickness of the coated-type designs. Therefore, this approach 
can achieve desired coatings with a variety of scaffold lengths. 
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This feature is of the utmost importance to the DNA 
nanotechnology community because the scaffold material length 
is often a key constraint for design, limiting the size of what can 
be built.  

 
FIGURE 3: INPUT TETRAHEDRAL MESH FOR REFINED AND 
SIMPLE TECHNIQUE WITH AXIS ALIGNED BOUNDING BOX 
(L, W, H) DIMENSIONS OF (21.7, 25.0 ,20.4) NM.  
 

This work also investigates the density within the walls for 
various thicknesses, determining that internal porosity or quality 
can also be tuned by the objective function. Such an approach 
which has not been addressed with prior algorithms shows how 
a design algorithm applied to this new problem can have a 
profound impact in the output quality. This paper addresses 
performance limitations in previous work for coated-type 
designs which was apparent in large gaps within the walls and 
low wall density where the overall structure did not replicate the 
shape of the tetrahedral mesh (Figure 4) [22]. Figure 4 displays 
an example of the cross-sectional view generated with the simple 
algorithm from previous work. In the figure, the rectangle to the 
left highlights the location of the cross-sectional view on the 
overall structure. This same cross-sectional representation is 
maintained for the refined technique. Such limitations show that 
the design problem of coating a scaffold around irregular 
geometries creates a challenging design space that cannot be 
tackled with simple optimization strategies. To tackle the 
challenging design space and further improve the quality of the 
coated designs, this work appends the simulated annealing 
algorithm with the Hustin move set [25]. This technique 
dynamically adjusts the probability of the shape rules to improve 
the performance of the algorithm, tune the wall thickness, and 
decrease the large gaps observed in previously generated 
designs. 

 
FIGURE 4: EXAMPLE OF GENERATED DNA ORIGAMI 
DESIGN USING SIMPLE TECHNIQUE WITH TOTAL SCAFFOLD 
LENGTH OF 12,901 BP. 
 
2. MATERIALS AND METHODS 

This section provides a brief description of the generative 
methods in the computational casting approach from previous 

work and details the refinements made to tune the mean effective 
thickness of generated coated-type DNA origami designs. The 
same three shape grammar rules are used, and a refined 
simulated annealing algorithm is then used to control the 
formation of these structures to meet the well-defined coating 
criteria. In the simulated annealing algorithm, coating behavior 
is rearticulated by replacing the objective function from previous 
work. The Hustin move set is then introduced as a modification 
to the simulated annealing algorithm to iteratively increase the 
probability of selected shape rules that help boost the algorithm’s 
coating performance. 

 
2.1 Shape Grammars 

In shape annealing, a shape grammar is a set of 2D or 3D 
shape rules that are applied sequentially from a starting 
geometric shape to generate a set of designs or language [23], 
while simulated annealing controls the evolution of the starting 
shape. In this case, the geometric shape takes on key features of 
a single-stranded DNA (ssDNA) in 3D form with a helical 
diameter of 2 nm and an axial rise per base of 0.34 nm or roughly 
34.3o turn per base. The shape grammar rules in this work mirror 
the rules from the previous computational casting technique [22], 
which adopt the honeycomb lattice architecture from the popular 
manual computer-aided design (CAD) tool, caDNAno [2]. Since 
the honeycomb lattice permits a union (or crossover) between 
neighboring helices at multiples of 7 bases at roughly 240o, the 
design language divides the scaffold into 7 bp sections ensuring 
continuous scaffold growth through the addition of a new 
section. 

 
FIGURE 5: SHAPE GRAMMAR 

 
Figure 5 illustrates simple examples of the three-rule shape 

grammar used in the previous work. The blue single helix shows 
helix growth in the +z-direction while the red single helix shows 
helix growth in the -z direction. The first rule is the crossover 
rule which generates a 7 bp increment of scaffold on the nearest 
of the three possible neighboring helices at angles 0o, 120o, and 
240o. Figure 5 shows the crossover at 120o. The second rule is 
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the extension rule which extends the scaffold by a 7 bp section 
along the z-axis of its current helix. Figure 5 shows extension of 
the blue single helix. The third rule is the reversal rule which 
undoes a previous call of the first and second rule to stop the 
scaffold from being stuck and encourages scaffold exploration 
within the given design space. Figure 5 shows the undoing of 
Rule 1. The rules create a language or set of instructions that 
drive the path of a continuous scaffold strand along a caDNAno 
honeycomb lattice architecture. 

 
 
2.2 Optimization with Simulated Annealing 

Shape annealing is a version of simulated annealing which 
is a stochastic optimization technique, where each state is 
calculated using a randomly generated shape rule as a move set. 
In previous work, the simulated annealing algorithm has an outer 
and inner loop. Within the inner loop of 𝑀 mutations or 
iterations, each randomly generated feasible state is assessed 
using an objective function, 𝑓(𝑥). For objective minimization, if 
∆𝑓(𝑥) ≤ 0, where the evaluated current and previous states are 
compared, the current state is accepted. However, if the 
condition is false, a probability of adding the state is calculated: 

𝑃,-- =	𝑒
.	∆"($)&  ,                                      (1) 

where ∆𝑓(𝑥) is the change in objective function and 𝑇 is the 
temperature. The current state can only be added if a normalized 
random number is less than the calculated probability. If a set 
limit (𝐿) of added states has been reached, the algorithm jumps 
out of the inner loop. In the outer loop, if no states have been 
added then the algorithm has reached equilibrium and can be 
terminated. If the condition is false, the temperature is lowered 
with an exponential function: 

𝑇 = 𝛼𝑇0 ,                                             (2) 
where 𝑇0 is the previous temperature value and 𝛼, which is 
between 0 and 1, is the reduction factor. The algorithm runs until 
either equilibrium is reached or the temperature reaches zero.  

 
 
2.2.1 Hustin Move Set 

In this paper, we apply an additional step within the outer 
loop of the simulated annealing algorithm called the Hustin 
move set, which adjusts the probability of selecting a given rule 
based on the performance of the algorithm at any time [25]. The 
rationale for dynamically modifying the probabilities using the 
Hustin move set is that the refined technique will increase the 
probability of selecting the appropriate shape rule for an 
increased coverage and wall density. This therefore decreases the 
number of poor shape rule acceptances made during the anneal. 
This common technique has been used to address the problem of 
optimal nonorthogonal routing of components in a chemical 
plant [26]. This problem is similar to the DNA scaffold routing 
problem in this work where the Hustin move set is used to 
modify the probability of selecting each shape rule.   Previously, 
the computational casting technique set an equal probability of 
selecting each shape rule throughout an anneal. The generated 
results from this fixed shape rule selection probability display 

sparse scaffold coverage of input polyhedral mesh and low wall 
density in the overall structure (Figure 4). Based on analysis, we 
hypothesize these performance limitations to originate from a 
lower call in the extension shape rule (rule 2) due to a higher 
ratio of neighboring helical sections of only 7 bp in length (rule 
1) within regions of sparse scaffold coverage. Therefore, 
modification of shape probability selection is necessary. 

In the modified simulated annealing algorithm, the 
probabilities of implementing moves are updated after each 
temperature reduction as a function of the success of the moves 
(or shape rules) in accomplishing the objective at the previous 
temperature. The measure of success per shape rule (𝑟) is 
determined by a quality factor,  

𝑄1 =
2
3'
∑ |∆𝑓(𝑥)|14567
,8860$6-

,							𝑟 = 1, . . . 𝑠,               (5) 

where 𝑛1 is the number of times the 𝑟$% shape rule was called at 
the previous temperature, ∆𝑓(𝑥) is the change in objective due 
to an accepted shape rule from objective minimization, and 𝑠 is 
the total number of shape rules. If a shape rule is not called at a 
specific temperature value, then its quality factor is set to zero. 
At the start of an anneal, each shape rule probability is initialized 
to ensure that each rule is likely to be called. While this initial 
probability could be skewed with an initial bias or uniform for 
all shape rules, the sum of all initial probabilities must equal 1: 

∑ 𝑃9,193$9,5	
01:;,;959$967

= 1,                               (6) 

where 𝑃9,1 is the initial probability of the 𝑟$% shape rule. Here, 
the initial probability for the extension rule is much higher than 
the crossover and reversal rules. Once the quality factor is 
calculated, the probability of selecting the 𝑟$% shape rule is 
updated with the following equation: 

𝑃1 = 𝑃9,1𝑃4 + (1 − 𝑃4)
<'

<()(*+
,								𝑟 = 1, . . . 𝑠,            (7) 

where 𝑃4, which is between 0 and 1, is a multiplier that 
guarantees the relevance of the initial bias per temperature 
reduction and 𝑄$:$,5 is the total quality factor over all shape 
rules. A shape rule with a larger quality factor will have a higher 
call probability at the next temperature.   

 
 
2.3 Shape Annealing 

Shape annealing uses simulated annealing to control when a 
randomly selected shape rule (or scaffold section) is accepted to 
the overall continuous scaffold routing pattern at a given state. 
Of note, prior uses of shape annealing in design focused on the 
design of truss structures [27].  One contribution of this work is 
the extension and demonstration of the algorithm applied at the 
nano scale to design DNA structures. 

Figure 6 illustrates a flow chart of the revised shape 
annealing casting algorithm including the extension to include 
the Hustin move set. In the flowchart, there are three key inputs: 
starting shape, specification, and objective and constraints. The 
starting shape, which is a match from the previous technique, is 
a blue scaffold 7 bp scaffold section. The specifications are the 
same key shape annealing parameters from previous work with 
an appended modification: initial temperature (𝑇9), limit (𝐿), 
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mutations (𝑀), reduction factor (𝛼), and initial probability 
(𝑝𝑟𝑜𝑏9) for Hustin move set. The constraints and objectives 
mirror the previous technique, where the constraint given is the 
tetrahedral mesh as a boundary and the objective is for scaffold 
to wall distance minimization. The algorithm focuses on shape 
rule transformation where each shape rule is evaluated based on 
the refined simulated annealing algorithm. In the flow chart the 
crossover rule (rule 1) is selected and applied to the starting 
shape which consists of a single blue segment which is 
transformed to a blue and red 14 bp long scaffold. The shape rule 
probabilities are updated per temperature reduction and the 
image for this step is an example where the cylinders in red are 
the accepted shape rules used to calculate the new probabilities. 
Once the overall shape has reached convergence, the shape 
annealing algorithm will stop and the output will be the final 
design.  
 
2.4 Structural Validation with Coarse-Grained 
Simulations 

Validating the shape and stability of these generated 
complex DNA origami designs is essential for ensuring structure 
formation during the time-intensive physical experimentation. 
There are a variety of established structural validation tools, 
which model the traits of DNA origami through computer 
simulations that provide detailed predictions of the behavior of 
the DNA nanostructures comparable to the results from physical 
experimentation [15,28–35]. OxDNA is a coarse-grained DNA 
model that is used as a tool to capture the structural, mechanical, 
and thermodynamic characteristics of DNA at the nucleotide 
resolution level over timescales ranging from, but not limited to, 
nanoseconds to microseconds that are relevant for studies of 
nanostructure behavior [32–34]. OxDNA provides invaluable 
information about the local and global dynamic properties of 
these DNA nanostructures such as the response of the structure 
due to internal stress [35], yielding under tension [36], and 
actuation [37].  

This work uses oxDNA to model the generated DNA 
origami designs following a common relaxation process [31] in 
which overlapping nucleotide volumes and stretched backbone 
bonds are corrected. The general goal of the relaxation process 
is to reach a steady state through energetic minimization of the 
system. The relaxation process is two-part, where a minimization 
algorithm runs for 2000 steps and a relaxation molecular 
dynamics simulation run for 10= steps. After the DNA origami 
nanostructure is well relaxed, another molecular dynamics 
simulation step is subsequently run for 10= steps with the 
absence of added forces or modified potentials used for root 
mean-square fluctuations (RMSF) calculations. After running 
simulations, these structures are analyzed using a standardized 
set of tools [38].  

FIGURE 6: SHAPE ANNEALING ALGORITHM FLOWCHART 
 
RMSF is one of the common structural analyses that measures 
the fluctuation of the DNA origami nanostructure during 
simulation. One way to calculate RMSF is by averaging the 
configurations generated over the entire simulation trajectory 
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[38]. It is important to note that all simulations in this work are 
performed at 295 K and a 15.15 fs time step (0.005 simulation 
units). All additional parameters used are detailed in literature by 
Doye et al. [31]. 
 

 
FIGURE 7: 𝐹(𝑋) REARTICULATION (A) PREVIOUS 𝐹(𝑋!) (B) 
CURRENT 𝐹(𝑋") (C) EXPONENTIAL VS. HYPERBOLIC 𝐹(𝑋) 
COMPARISON (D) ILLUSTRATION OF 𝐹(𝑋) VARIABLES. 
 
2.5 Rearticulation of Coating Behavior 

As stated previously, the objective function defines the 
desired characteristic of coating and is used to assess whether a 
shape rule is accepted or rejected. In previous work, coating 

behavior is achieved by minimizing the distance from the center 
of generated helical 7 bp scaffold sections towards the outer wall 
of the input triangular mesh. The distance is then scaled along 
the following objective function to articulate coating [22]: 

𝑓(𝑥) = 1.19> ,                                     (8) 
where 𝑥 is the minimum perpendicular Euclidean distance from 
the outer wall of the input mesh to the 7 bp scaffold section. The 
constant value in the previous objective function is purely 
arbitrary and is selected from a range of 1.00 to 2.00 where 
values approaching 1.00 generates designs that are loosely 
coated with higher coverage while values approaching 2.00 
generates designs that are tightly coated with limited coverage of 
the polyhedral mesh. The rationale for selecting an exponential 
function is because the shape rules generated at a closer distance 
to the mesh have lower 𝑓(𝑥) values and therefore minimize 
∆𝑓(𝑥) while the shape rules generated at a further distance from 
the mesh would have a higher likelihood of rejection due to much 
higher 𝑓(𝑥) values. In the previous technique, internal porosity 
or quality is traded for input mesh coverage. This is shown in the 
plot from Figure 7(a). Although this objective function 
demonstrates the capability of coating, the coated designs do not 
replicate the overall shape of the input polyhedral mesh as shown 
in Figure 4. This is due to the slow ramp of the exponential curve 
in Figure 7(a) where the shape rules generated at a closer 
distance to the mesh surface do not fully minimize ∆𝑓(𝑥) and 
the shape rules generated at a further distance from the mesh do 
not have comparably higher 𝑓(𝑥) values. Evidently, a change in 
objective function is necessary. 

To increase quality and internal porosity of overall coated 
designs, the generated scaffold sections are limited to set desired 
distances measured from the outer wall of the desired mesh to a 
location on the outside of the mesh and the objective function is 
replaced with a hyperbolic function following a more step-like 
behavior: 

𝑓(𝑥) = 2
(-.>),

,                                   (9) 
where 𝑥 is the minimum perpendicular Euclidean distance from 
the outer wall of the input mesh to the 7 bp scaffold section and 
𝑑 is the set desired distance from outer wall of input mesh in 
which scaffold sections can be accepted to control effective wall 
thickness. The step-like behavior allows for more acceptance of 
feasible scaffold sections that tightly coat the outer wall of the 
input mesh without compromising porosity since the 𝑓(𝑥) values 
are all close to zero before the set desired distance. As the 
hyperbolic function approaches the set-desired distance, there is 
an abrupt increase in 𝑓(𝑥) values, which lowers the likelihood 
of shape rule acceptance according to the shape annealing 
algorithm. This is shown in Figure 7(b). This hyperbolic function 
also allows for physically relevant parameters as opposed to the 
arbitrary parameters of the exponential function shown in Figure 
7(c).  The exponent on the refined objective function is selected 
from a range of 2 to 9 where values approaching 2 show a more 
gradual increase in function values with distances close to 𝑑 
while values approaching 9 show a sharper increase in function 
values that become too computationally intensive with distances 
closer to 𝑑. 6 is a more appropriate exponent value since it 
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creates function values with distances closer to 𝑑 that are 
computationally feasible to calculate and still maintain a sharp 
increase in function values. Figure 7(d) paints a picture of a 7 bp 
scaffold section accepted within the set desired distance. 

 
2.6 Hustin Move Set Initial Probability  

The Hustin move set initial probability used for all designs 
generated with the refined shape annealing algorithm in order of 
shape rules are 0.18 for the crossover rule, 0.44 for the extension 
rule, and 0.38 for the reversal rule. An initial probability search 
was implemented before changing the objective function with set 
desired distances by varying each shape rule from (0,1) to find 
structures that have the largest number of scaffold sections 
within an arbitrary distance of 12.0 nm from the mesh surface. 
This arbitrary distance was selected because the resulting 
scaffold routes showed sparse searches of the vast design space 
beyond 𝑑 = 12.0 nm. The rationale for setting a bound for 
measuring the total scaffold sections is to find the shape rule 
probabilities with a higher porous layer close to the mesh 
surface. Since regions with large gaps from the previous 
algorithm occur due to a reduction in the application of the 
extension rule, the refined algorithm has a lower probability for 
the crossover rule and the highest probability for the extension 
rule. The reversal rule has a reasonably high probability to ensure 
that the algorithm does not converge on a local minimum, or the 
scaffold is not stuck during an anneal and can fully explore the 
design space.  The probabilities are then dynamically adjusted 
during run time as described in Section 2.2.1. 
 

 
3. RESULTS 

By using a 3D tetrahedral mesh as input, the refined shape 
annealing algorithm can generate coated-type designs with a 
variety of effective wall thicknesses. After generating DNA 
origami designs of varying thicknesses, the designs are 
converted to the caDNAno JSON file format using a customized 
scadnano Python script [39]. The designs are then auto-stapled 
using the caDNAno auto-stapling function [2] with additional 
manual editing due to the non-traditional scaffold routings for 
effective stapling. After stapling, the JSON files are converted 
using the TacoxDNA platform [40] to PDB files, which are 
visualized using ChimeraX [41,42]. The JSON files are also 
converted to oxDNA topology and configuration files which are 
used as input files to run simulations. The output files after 
running simulations are used as input for the RMSF analysis 
scripts. The results from the analysis are then visualized using 
oxView [38] and ChimeraX.  

Since the refined shape annealing algorithm uses a 
probabilistic technique, the generated continuous scaffold can 
get stuck, because the algorithm converges to a local minimum. 
This is typically avoided by selecting the best generated solution 
from several algorithm runs [43]. In this work, the algorithm is 
run in 10 batches of 10 (100 times in total), where the best 
generated solution is selected per batch. This is done per 𝑑 from 
8.0 to 12.0 nm. Since the metric of success is a tightly packed 
generation of scaffold within the set desired distance, the 10 

DNA origami designs with the highest scaffold length are 
selected. An exhaustive search is performed to select the best 
shape annealing parameters per 𝑑 that follow the metric of 
success stated by varying the limit (𝐿) and temperature (𝑇), 
which were found to be more sensitive parameters during an 
anneal. Table 1 shows the shape annealing parameters per set 
desired distance using the tetrahedral mesh as input. Table 2 
shows the mean and standard deviation of 10 best generated 
solutions per 10 batches using the tetrahedral input mesh. To 
demonstrate the capability of the refined shape annealing 
algorithm in generating DNA origami designs with varying 
effective wall thicknesses, Figure 8 shows the cross-sectional 
view of the top three out of 10 designs with 𝑑 = [8.0, 9.0, 12.0] 
nm. Figure 9 shows the fully relaxed configurations of the 
structures generated in Figure 8 after structural validation 
through oxDNA simulations. Figure 10 shows the root mean-
square fluctuations (RMSF) of the structures generated from 
oxDNA. Figure 12 illustrates the average effective wall 
thickness analysis of the top 10 generated DNA origami designs 
per batches of 10.  

To ensure the method of analysis in Figure 12 is not mesh 
specific, the results from a cube input mesh with an edge length 
of 21.2 nm using the refined technique with 𝑑 = 9.0 nm are also 
analyzed under the same method. Figure 11 shows an example 
of a fully relaxed configuration and RMSF from the 10 best 
generated DNA origami designs using the cube input mesh. In 
Figure 13, the same method of analysis of the top 10 generated 
DNA origami designs per batches of 10 for the cube input mesh 
is used to illustrate effective wall thickness. Tables 3 & 4 show 
the shape annealing parameters for 𝑑 = 9.0 nm and the mean and 
standard deviation of the 10 best generated solutions per batch, 
respectively, using the input cube mesh. 

 
FIGURE 8: TWO OF BEST GENERATED DNA ORIGAMI 
DESIGNS FOR TETRAHEDRAL MESH USING REFINED 
TECHNIQUE WITH TOTAL SCAFFOLD LENGTHS OF: (A) 5,306 
BP AND 5,257 BP FOR 𝐷 = 8.0 NM, (B) 7,273 BP AND 6,979 BP 
FOR 𝐷 = 9.0 NM, AND (C) 12,264 BP AND 12,586 BP FOR 𝐷 =
12.0 NM. 
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FIGURE 9: FULLY RELAXED CONFIGRUATIONS FROM 
OXDNA SIMULATIONS OF STRUCTURES IN FIGURE 8 FOR: (A) 
𝐷 = 8.0 NM, (B) 𝐷 = 9.0 NM, AND (C) 𝐷 = 12.0 NM. 
 

 
FIGURE 10: RMSF OF STRUCTURES IN FIGURE 8 FOR: (A) 
𝐷 = 8.0 NM, (B) 𝐷 = 9.0 NM, AND (C) 𝐷 = 12.0 NM. RMSF 
PATTERNS USE A COLORMAP FROM VIOLET TO YELLOW. 

 

 
FIGURE 11: ONE OF BEST GENERATED DNA ORIGAMI 
DESIGNS USING REFINED TECHNIQUE AND CUBE MESH FOR 
𝐷 = 9.0 NM (A) WITH TOTAL SCAFFOLD LENGTH OF 13,937 
NM (B) FULLY RELAXED CONFIGURATION (C) RMSF 
PATTERN USING COLORMAP FROM VIOLET TO YELLOW. 
 

 
FIGURE 12: EFFECTIVE THICKNESS ANALYSIS FOR 
TETRAHEDRAL MESH USING REFINED TECHNIQUE: (A) AVG 
POROSITY ANALYSIS FOR 𝐷 = 9.0 NM (B) AVG EFFECTIVE 
THICKNESS ANALYSIS FOR 𝐷 = 9.0 NM (C) AVG EFFECTIVE 
THICKNESS COMPARISON (D) GRID FILLING VISUALIZATION 
AT MID-HEIGHT OF A STRUCTURE SHOWING UNOCCUPIED 
GRIDS IN RED. USING SIMPLE TECHNIQUE: (E) AVG 
EFFECTIVE THICKNESS ANALYSIS (F) AVG POROSITY 
ANALYSIS 
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FIGURE 13: EFFECTIVE THICKNESS ANALYSIS FOR CUBE 
MESH USING REFINED TECHNIQUE FOR 𝐷 = 9.0 NM (A) AVG 
POROSITY ANALYSIS (B) AVG EFFECTIVE WALL THICKNESS 
ANALYSIS (C) GRID FILLING VISUALIZATION AT MID-
HEIGHT OF A STRUCTURE SHOWING UNOCCUPIED GRIDS IN 
RED. 
 
TABLE 1 REFINED SHAPE ANNEALING OPTIMIZATION 
PARAMETERS USING TETRAHEDRAL MESH AS INPUT 
𝐝 [nm] 𝐓 𝐋 𝛂 𝐌 

8.0 956 280 0.98 510 
9.0 941 300 0.98 510 
10.0 980 260 0.98 510 
11.0 888 340 0.98 510 
12.0 912 260 0.98 510 

 
TABLE 2 AVG AND STD DEV OF TOTAL SCAFFOLD LENGTH 
(sl)OF TOP 10 GENERATED DESIGNS PER 10 BATCHES WITH 
INPUT TETRAHEDRAL MESH USING REFINED TECHNIQUE 

𝐝 [nm] 𝐬𝐥Y  𝛔 
8.0 5187 30 
9.0 6755 38 
10.0 8456 34 
11.0 10549 69 
12.0 12138 40 

TABLE 3 REFINED SHAPE ANNEALING OPTIMIZATION 
PARAMETERS USING CUBE MESH AS INPUT 
𝐝 [nm] 𝐓 𝐋 𝛂 𝐌 

9.0 975 360 0.98 510 
 
TABLE 4 AVG AND STD DEV OF TOTAL SCAFFOLD LENGTH 
(sl)OF TOP 10 GENERATED DESIGNS PER 10 BATCHES WITH 
INPUT CUBE MESH USING REFINED TECHNIQUE 

𝐝 [nm] 𝐬𝐥Y  𝛔 
9.0 13818 49 

 
 
4. DISCUSSION 

Figure 8-10 illustrate the capability of the refined shape 
annealing algorithm in controlling the quality of the effective 
wall thickness of coated-type designs using a complex 
tetrahedral boundary. Figure 8 illustrates the tight coating of 
scaffold sections which is highlighted in the maintenance of the 
triangular shape toward the edges of the generated structures. 
This is unlike the structure generated in Figure 4 using the simple 
shape annealing algorithm where the outer walls of the structure 
form an arbitrary shape. Figures 9 and 10 illustrate the simulation 
results for the structures in Figure 8 with 𝑑 = [8.0, 9.0, 12.0] nm. 
Although the fully relaxed configurations and RMSF 
calculations in Figure 9 and 10 show major deviations for 𝑑 =
8.0 nm from the intended final configuration, there are only 
slight deviations for 𝑑 = 9.0 nm and higher. Figure 10 illustrates 
a decrease in regions with high fluctuations from increasing the 
set desired distance values. The results from the RMSF 
calculations in Figure 10 show some regions of high RMSF 
values where the crossover rule (rule 1) is accepted recursively 
with lack of variety in the acceptance of the crossover rule and 
extension rule (rule 2). These regions where rule 1 is recursively 
accepted are subjected to high fluctuations, which should be 
decreased before physical characterization. A post-processing 
step would be a prime solution to address such limitations by 
applying the new extension rule to those regions. Instead of 
scaffold sections that are only 7 bp in length, the scaffold 
sections would then be at least 14 bp in length which would 
create more effective stapling and reductions in the number of 
high fluctuations. In the future, it would be interesting to explore 
how the generated scaffold route is affected by the incorporation 
of RMSF data.  

Figure 12 illustrates verification of increasing internal 
porosity and quality in changing effective wall thickness values 
of the generated scaffold sections of the top 10 designs. The 
distance of each helical segment in Figure 12 is calculated from 
its center. The set desired distances of 9.0 nm to 11.0 nm were 
selected for analysis since values lower than 9.0 nm are unable 
to generate structures maintaining structural integrity while 
values higher than 11.0 nm generate structures with scaffold 
lengths orders of magnitude longer than the M13 scaffold. Figure 
12 (a) illustrates the average porosity within the walls of the top 
10 generated designs using the refined technique by calculating 
the percent of helical segments generated out of the theoretical 
maximum helical segments within set regions from the mesh 
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surface to 𝑑. The plotted region starts from [0.0,1.0) nm and 
increases by 1.0 nm. Although Figure 12 (a) only shows the 
porosity analysis for 𝑑 = 9.0	nm, the analyses for higher 
distances show similar trends. While Figure 12 (a) shows a trend 
that is approximately uniform with a higher percentage of helical 
segments within the set regions, Figure 12 (f) shows a trend that 
is approximately exponential with a lower percentage of helical 
segments within set regions which therefore demonstrates an 
increase in effective thickness quality and porosity. 
Improvement in uniformity can also be quantitatively measured 
with a coefficient of variation (CV) formula [44] which shows 
the diversity of a dataset with respect to the mean: 

CV = A
B
	,                                             (10) 

where σ is the standard deviation and µ is the mean. The CV ratio 
is directly proportional to the variability within the data set in 
relation to the mean [44]. The histogram of the original algorithm 
in Figure 12 (f) has a CV of 0.96 while the histogram of the 
updated algorithm shows improvements with a CV of 0.49. 

Using the refined technique, an effective wall thickness 
value is calculated from the cumulative percent of helical 
segments within an offset distance from the mesh surface to 𝑑 in 
Figure 12 (b). The offset distance with 95.0% of total scaffold 
sections plus 1.0 nm to account for the radius of the scaffold is 
the effective wall thickness value. Although Figure 12(b) only 
shows the effective wall thickness analysis for 𝑑 = 9.0 nm, the 
analyses for higher distances show similar trends. Figure 12 (c) 
shows an increase in effective wall thickness value that 
approximates to the respective set desired distance using the 
refined technique. Figure 12 (e), which uses the simple 
technique, has a slower ramp to the total number of scaffold 
sections than in Figure 12 (b), demonstrating a steady decrease 
in generated scaffold segments towards to the edges of the 
structure. This steady decrease demonstrates the lack of 
generated structures with tight coatings unlike the plot illustrated 
in Figure 12 (b). Figure 12 (d) provides a visualization of the 
filling within the walls at the middle of the last generated 
structure with 𝑑 = 9.0 nm from Figure 8 (a) using the refined 
technique with 45% of grids filled, which certainly shows a 
tighter packing than the previous technique in Figure 4. 

Using the refined technique, a simple cube mesh is used as 
an input with 𝑑 = 9.0 nm to demonstrate the generality of this 
analysis method. Figure 11 (a) illustrates the versatility of the 
refined shape annealing algorithm in utilizing arbitrary input 
mesh files to generate unique scaffold routes. Figure 11 (b) 
shows a slight deviation from the intended final configuration. 
The same conclusions can be made in Figure 10 for Figure 11 (c) 
where regions of high RMSF values are due to lack of variety in 
sequentially accepted shape rules. Using the same analysis 
method in Figure 12 (a), Figure 13(a) illustrates the average 
porosity with the cube as an input mesh that also follows an 
approximately uniform trend. However, Figure 13(a) has a CV 
of 0.36 thus showing more uniformity within the wall of the 
structure with a cube input mesh than a tetrahedron input mesh. 
Using the same analysis method in Figure 12 (b), the average 
effective thickness value calculated is 9.0 nm. Interestingly, in 

Figure 13 (c) 69% of grids are filled, which is much higher than 
the number of grids filled with the tetrahedral mesh as input. This 
leads to the hypothesis that prism-like meshes have a higher 
porosity due to the alignment of the helical axis to the mesh wall. 
In the future, it would be interesting to investigate the 
relationship between porosity and scaffold axis orientation.  

Although the refined algorithm shows major improvements 
in the articulation of coating, Figure 8 and 11 show small gaps 
within the walls of the generated designs. This is attributed to the 
scaffold being unable to fully search the complex design space 
during an anneal. A post-processing step can also be used to 
address the lack of total design space exploration in the future. 
Expanding our simple shape grammar rules would be an 
interesting way of solving the gap problem. This step will only 
target regions with small gaps to ensure adequate filling. The 
same shape annealing algorithm would run, with only one 
differing property where a new shape grammar rule would 
replace the current extension rule (rule 2) where the scaffold 
could be extended by 14 bp instead of 7 bp. 

In addition to the application of a post-processing step, 
future work will focus on automating the stapling process for full 
design automation. Another desired next step would be 
developing an algorithm to unite the start and end location of the 
generated scaffold pattern to accommodate both linear and 
circular scaffolds.  
 
 
5. CONCLUSION 

The results show that shape annealing is apt for automating 
varying effective wall thicknesses to generate novel DNA 
origami designs with high dense layering within the walls. By 
applying design methods, the refined shape annealing algorithm 
can navigate the challenging physical space. Such design 
methods include adding the Hustin move set to favor rules that 
follow the objective function and redefining coating to show that 
desired characteristics can be well coded into DNA origami 
designs. The results, which introduce new capabilities to enable 
the generation of an array of effective quality solutions, are an 
important step for creating a tool for the DNA origami design 
community. This opens doors to many desirable traits to address 
the long-standing challenges in DNA origami design that could 
be coded into the structures such as increasing nanostructure 
yield [45] and closing the design-iteration loop due to added 
knowledge of design-property relationship [46].  
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