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Abstract 

 

DNA nanotechnology can form nanostructures with 

user-defined geometries based on base-pairing mechanism. 

However, current bottom-up design tools for such 

structures requires expertise on DNA. With simulated 

annealing we can stochastically encapsulate a given 

structure with a scaffold single-stranded DNA (ssDNA), 

thus providing a novel top-bottom method for the design of 

complicated DNA nanostructures. To evaluate the quality 

of scaffold encapsulation, the existence of gaps is an 

important metric that differentiates fully encapsulated 

structures from not fully encapsulated ones. Here we 

propose to apply convolutional neural networks (CNN) to 

classify the output images of simulated annealing 

algorithm. We found that our CNN was able to improve its 

accuracy to near 100% after the dataset was reclassified to 

three classes: fully encapsulated, not fully encapsulated 

with small gaps and not fully encapsulated with big gaps. 

The application of deep neural networks enables us to 

efficiently select structures that are fully encapsulated. 

 

1. Introduction 

DNA nanotechnology, an exponentially progressing 

field, focuses on the design and self-assembly of 

predictable and programmable DNA-based nanostructures 

due to the distinct Watson-Crick base-pairing where 

adenine (A) and cytosine (C) form hydrogen bonds with 

thymine (T) and guanine (G) [1]. Due to DNA’s 

programmable bases, the field offers an unmatched ability 

to control the formation and size of arbitrarily shaped and 

biocompatible DNA nanostructures [2]. The evolution of 

DNA nanotechnology leads to the creation of DNA 

origami, which entails the folding of a long single-stranded 

DNA (ssDNA) (or scaffold) directed by hundreds of short 

oligonucleotides (or staples) to form intriguing polyhedral 

nanostructures (Figure 1) [3,4]. Recently, DNA origami has 

served to create nanodevices with a plethora of functional 

applications such as multifluorophore beacon sensing 

platforms [6], cargo-sorting robots [7], and drug delivery 

vehicles [8].  

 
 
Figure 1: Formation of DNA origami nanostructure. Scaffold 

strand forms hydrogen bonds with complementary staple strand 

(pink), which folds scaffold into desired configuration [5]. 

2. Related Work  

Currently, a majority of DNA origami nanodevices are 

manually designed with caDNAno, a bottom-up software 

that starts at the base scale to create a DNA origami design 

[9]. CaDNAno, which uses a square or honeycomb lattice 

architecture, creates 2D drawings of DNA nanostructures 

that fold into 3D, as shown in Figure 2(A). [9]. However, 

caDNAno heavily relies on the user’s expertise which 

slows the design process and constrains the design space to 

simple geometries. Automated tools can help accelerate the 

design process and expand the design space by utilizing a 

top-down approach that starts with an outline of the desired 

configuration and works backwards to define the DNA base 

sequence to form the nanostructure. However, current 

automated tools are limited to wireframe structures [10, 11] 

or fully conceptualized structures of constant cross-sections 

[12], as shown in Figure 2 (B) and (c). Currently, there is no 

top-down automated tool capable of performing 

parameterized design to conceptualize complex multilayer 

origami nanodevices [13]. 

 

 
Figure 2: Current bottom-up and top-down DNA origami design 
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software. (A) An illustration of a simple DNA origami design in 

honeycomb CaDNAno [9]. (B) Examples of wireframe structures 

designed on the top-down DAEDELUS and vHelix [10, 11]. (C) 

A simple DNA origami design in MagicDNA, a top-down design 

tool [12]. 
 

Here we investigated a flexible top-down framework that 

was capable of addressing current software limitations by 

computing optimal scaffold routing only with a set of 

constraints and desired features [13]. This framework is 

achieved through simulated annealing, a robust and general 

random technique that statistically approaches global 

optimum among numerous local optima by accepting 

worse solutions early on [14]. Developed by Kirkpatrick et 

al., simulated annealing can stochastically optimize 

parameters for an arbitrary model and ensures a good 

solution within sufficient time [14]. The algorithm 

randomly samples a feasible solution u, and the energy at 

that solution, Eu, is calculated. Another random feasible 

solution, v, is sampled, and the energy, Ev, is calculated. In 

the case of objective minimization, v replaces u if Ev < Eu , 

of if Ev ≥ Eu, with a probability as a function of temperature, 

T: 

 

 
 

 If a generated random number between 0 and 1 is less 

than Paccept, then v is accepted; if not, u is not replaced. The 

higher the temperature, the higher the probability of 

accepting a worse solution. Alternatively, at set 

temperatures, the higher the difference between the energy 

states, the lower the probability of accepting worse 

solutions. The algorithm runs for several iterations (or 

mutations) at a set temperature value until convergence or 

equilibrium is reached, or the temperature reaches 0. The 

algorithm is analogous to the annealing process of metals, 

where the energy can be substituted for an objective 

function. An appropriate cooling schedule must be chosen 

to reduce the temperature. Although the most appropriate 

cooling schedule which ensures convergence to the global 

optimum would be one that follows a logarithmic trend, it 

would exponentially increase the search time for large 

problems. Here we use a geometric cooling schedule that 

follows an exponential trend T : = αT, where α is between 0 

and 1. Although this schedule does not ensure convergence 

to the global optimum, it searches for a good solution in 

sufficient time. After the temperature has reduced, the 

algorithm runs for several iterations till T=0 is reached. 

 

This top-down framework creates unique routing 

patterns of the scaffold that are constrained to the 

caDNAno honeycomb lattice architecture. With a cube as 

input from the user, the framework’s capability was 

demonstrated with the coating application where the goal is 

to encapsulate the surface a user-defined geometry [13]. 

Since the goal is to encapsulate a given geometry, the 

metric of success is based on the presence of gaps. It is 

currently difficult to create a method for evaluating the 

presence of gaps. As a simple demonstration of the 

framework’s ability to encapsulate user-defined 

geometries, the framework was tested with a simple cube, 

shown in Figure 3. 

 

 

 
Figure 3: Scaffold DNA origami cube design generated with the 

coating application, where the green points are the inner and outer 

constraints. Input cube has side length of 6 nm. 

3. Data 

Since the simulated annealing algorithm can generate an 

infinite number of unique scaffold routing patterns due to 

its stochastic nature, we ran the algorithm, using tailored 

parameters, 1183 times to generate encapsulated DNA 

origami nanostructures given a cube of 6 nm in sidewall 

length as input. Images of the top-view of these structures 

were manually generated, classified and resized to 200×200 

as preprocessing, and were served as the data-set to 

evaluate the presence of gaps.  

4. Methods 

The generated images were initially labeled into the two 

classes, class 0 as not fully encapsulated and class 1 as fully 

encapsulated, with 400 images in each class (see Figure 4). 

The images that were not fully encapsulated had a 
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class 0: 400 images 

minimum of three side-walls to images missing only a 

single cylinder.  

 

                                                      

Figure 4: Top-view of image classes. Example of class 0 with a 

minimum of three side walls where green squares represent inner 

and outer constraints and white dashed square represents location 

of smallest gap (top). Example of class 1 with fully encapsulated 

cube (bottom). 
 

Table 1 and Figure 5 show the performance comparison 

on cutting edge image classification and consider the 

accuracy of the fuzzy measure, decision tree, support vector 

machine, and neural network methods based on results 

from a literature survey [15]. Based on the comparative 

analysis in Figure 5, it is evident that CNNs provide a better 

accuracy than existing image classification techniques due 

to its ability to process images by extracting hidden 

features, allow parallel processing, and real time operation 

[16]. For such reasons, we created a custom CNN for image 

classification. 

 

 
 
Table 1: A comparative analysis of different image classification 

techniques [15].  

 

 
Figure 5: A comparison of the accuracy of different image 

classification methods [15].  

 

 Figure 6 displays the custom CNN with the following 

descriptions where CONV(a, b) means a convolution layer 

with a filters and a window size of b × b, POOL(c) means a 

pooling layer with a factor of c, FC(a) means a 

fully-connected layer with a units, DROPOUT(d) means 

drop d/100 neurons, and NORM means batch 

normalization [17]. 

 

 CONV(16, 3), RELU, NORM, CONV(32, 3), RELU, 

NORM, POOL(2), CONV(64, 3), NORM, CONV(128, 3), 

NORM, POOL(2), CONV(256, 3), NORM, CONV(512, 

3), NORM, POOL(2), CONV(512, 3), NORM, POOL(2), 

CONV(512, 3), NORM, POOL(2), DROPOUT(0.40), 

FC(1024), RELU, DROPOUT(0.30), FC(1024), RELU, 

DROPOUT(0.20), FC(2), SOFTMAX.  

class 1: 400 images 
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Figure 6. An overview of the custom CNN frame.  
 

The custom CNN architecture takes images of size 

200×200 as input where the convolutional layer runs a 

sliding window through the images and convolves the 

sub-image with a filters at each step to generate a volume 

with larger depth [17]. The pooling layer down samples the 

generated volume along the spatial dimension by c factor 

[17]. The batch normalization layer normalizes the output 

of the previous layer and thus allows each layer to learn 

more independently [18]. It is also used here as 

regularization to prevent overfitting. The dropout layer 

randomly turns d/100 of neurons off in order to boost the 

learning of the model [18]. It is also used as a regularization 

technique for overfitting prevention.  

The following arbitrary parameters were selected for the 

CNN: batch size of 20, adam optimizer with a learning rate 

of 0.0001 and a decay of 1e-6, binary crossentropy loss, 

epoch length of 100, and a validation split of 30%. The 

following batch size was selected to reduce oscillations in 

the accuracy calculation. Adam was selected because it is a 

robust and general optimizer, where the learning rate was 

reduced with a time-based decay as the training progressed. 

Binary crossentropy loss was selected since we designed a 

two-class problem. 

In addition, we also implemented the popular pretrained 

models of VGGNet and ResNet50 for comparison to the 

custom CNN architecture [Fig. 7].  

  

          

Figure 7. Popular architecture models. VGG (Visual Geometry 

Group) architecture (left). ResNet (Residual Network) 

architecture (right) [19]. 

5. Experiments 

Experimental results, including accuracy and loss plots 

of the custom CNN, VGG16 and ResNet50 are shown here 

[Fig. 8-10]. For our custom CNN, the train set and test set 

accuracy reach 100% and 73% respectively after 60 

epochs. The loss of train set and test set decrease to 0 and 

2.6. Both the accuracy and loss trend are reasonable. But 

the accuracy is not as high as expected. Considering the 

images are relatively simple, we expected the results would 

be better. We then tested VGG16 and ResNet50 to see if 

it’s because our custom CNN caused the low accuracy. The 

test accuracy of VGG16 reaches 86% after 50 epochs, 
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which is better than custom CNN. However, the loss of 

validation set increases slowly with increasing epochs. We 

could not explain the exact reason, but since the loss 

difference is very small on the same scale, we think the loss 

is minimized for the validation set. ResNet50 gives a small 

improvement of accuracy to 78%, and a low loss for the test 

set. 

  

 
Figure 8. Accuracy and loss vs. number of epochs for custom 

CNN. 

 

 

 
Figure 9. Accuracy and loss vs. number of epoch lengths for 

pretrained VGG16 

 

 
Figure 10. Accuracy and loss vs. number of epoch lengths for 

pretrained ResNet50. 
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Although we saw improvements from VGG16 and 

ResNet50, the accuracies did not fit our expectations. 

Considering both VGG16 and ResNet50 are excellent deep 

neural networks, we reason that the low accuracy problem 

is caused by our dataset, the images. As mentioned in 

methods dataset section, we manually classified our images 

to two different classes, class 0 as not fully encapsulated 

and class1 as fully encapsulated. However, in class 0, there 

are a group of images (~100) that are not fully 

encapsulated, but with very small gaps, as shown in Figure 

4 with the white dashed block. These kinds of images are 

hard to differentiate from fully encapsulated ones. We think 

these images cause the deep neural networks to misclassify 

them to the fully encapsulated class (1). To prove our 

hypothesis, we discriminated the big gaps and small gaps in 

class 0, and reclassified our dataset into three classes, class 

0 as not fully encapsulated with big gaps, class1 as not fully 

encapsulated with small gaps and class 2 as fully 

encapsulated (Figure 11).  

 
 
Figure 11. Dataset reclassification: class 0 as not fully 

encapsulated with big gaps, class 1 as not fully encapsulated with 

small gaps and class 2 as fully encapsulated. 

 

We tested the dataset with new classification using the 

custom CNN. Results are shown in Figure 12. The accuracy 

for both the train set and test set reach 100% quickly. The 

losses are close to 0 after 30 epochs. Th results show that 

the custom CNN can classify our dataset correctly after 

reclassification. 

 
 
Figure 12. Accuracy and loss plots of custom CNN using 

three-class dataset. 

6. Conclusions 

To sum up, all three deep neural networks, the custom 

CNN, VGG16 and ResNet50, were able to classify the 

top-view images of scaffold encapsulation of a given 

geometry that is generated from simulated annealing with 

70% - 90% accuracy using initial classification, where only 

fully encapsulated and not fully encapsulated were 

differentiated. After a finer dataset classification that 

separated not fully encapsulated structures with small gaps 

and big gaps, the custom CNN was able to reach near 100% 

accuracy of classification for validation set. Our results 

show that the classification of dataset is critically important 

for the performance of the deep neural networks. Our 

propose that aims to classify the quality of encapsulations 

from simulated annealing algorithm is successful. In future, 

reinforcement learning can be applied for searching, 

optimizing the parameters in simulated annealing, and 

finding the optimal encapsulation of a given geometry. By 

combining simulated annealing and deep learning, 

top-down design and manufacturing of DNA 
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nanostructures with custom geometries will more 

opportunities to the community. 

7. Contributions 

Babatunde generated the dataset. Both Babatunde and 

Wang contributed to coding the custom CNN, adjusting its 

parameters and writing the report. 
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