

1

Abstract

DNA nanotechnology can form nanostructures with

user-defined geometries based on base-pairing mechanism.

However, current bottom-up design tools for such

structures requires expertise on DNA. With simulated

annealing we can stochastically encapsulate a given

structure with a scaffold single-stranded DNA (ssDNA),

thus providing a novel top-bottom method for the design of

complicated DNA nanostructures. To evaluate the quality

of scaffold encapsulation, the existence of gaps is an

important metric that differentiates fully encapsulated

structures from not fully encapsulated ones. Here we

propose to apply convolutional neural networks (CNN) to

classify the output images of simulated annealing

algorithm. We found that our CNN was able to improve its

accuracy to near 100% after the dataset was reclassified to

three classes: fully encapsulated, not fully encapsulated

with small gaps and not fully encapsulated with big gaps.

The application of deep neural networks enables us to

efficiently select structures that are fully encapsulated.

1. Introduction

DNA nanotechnology, an exponentially progressing

field, focuses on the design and self-assembly of

predictable and programmable DNA-based nanostructures

due to the distinct Watson-Crick base-pairing where

adenine (A) and cytosine (C) form hydrogen bonds with

thymine (T) and guanine (G) [1]. Due to DNA’s

programmable bases, the field offers an unmatched ability

to control the formation and size of arbitrarily shaped and

biocompatible DNA nanostructures [2]. The evolution of

DNA nanotechnology leads to the creation of DNA

origami, which entails the folding of a long single-stranded

DNA (ssDNA) (or scaffold) directed by hundreds of short

oligonucleotides (or staples) to form intriguing polyhedral

nanostructures (Figure 1) [3,4]. Recently, DNA origami has

served to create nanodevices with a plethora of functional

applications such as multifluorophore beacon sensing

platforms [6], cargo-sorting robots [7], and drug delivery

vehicles [8].

Figure 1: Formation of DNA origami nanostructure. Scaffold

strand forms hydrogen bonds with complementary staple strand

(pink), which folds scaffold into desired configuration [5].

2. Related Work

Currently, a majority of DNA origami nanodevices are

manually designed with caDNAno, a bottom-up software

that starts at the base scale to create a DNA origami design

[9]. CaDNAno, which uses a square or honeycomb lattice

architecture, creates 2D drawings of DNA nanostructures

that fold into 3D, as shown in Figure 2(A). [9]. However,

caDNAno heavily relies on the user’s expertise which

slows the design process and constrains the design space to

simple geometries. Automated tools can help accelerate the

design process and expand the design space by utilizing a

top-down approach that starts with an outline of the desired

configuration and works backwards to define the DNA base

sequence to form the nanostructure. However, current

automated tools are limited to wireframe structures [10, 11]

or fully conceptualized structures of constant cross-sections

[12], as shown in Figure 2 (B) and (c). Currently, there is no

top-down automated tool capable of performing

parameterized design to conceptualize complex multilayer

origami nanodevices [13].

Figure 2: Current bottom-up and top-down DNA origami design

Classifying the scaffold routing of computed DNA origami designs using CNN

Tito Babatunde

Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA 15213
bbabatun@andrew.cmu.edu

Weitao Wang

Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA 15213
weitaowa@andrew.cmu.edu

2

software. (A) An illustration of a simple DNA origami design in

honeycomb CaDNAno [9]. (B) Examples of wireframe structures

designed on the top-down DAEDELUS and vHelix [10, 11]. (C)

A simple DNA origami design in MagicDNA, a top-down design

tool [12].

Here we investigated a flexible top-down framework that

was capable of addressing current software limitations by

computing optimal scaffold routing only with a set of

constraints and desired features [13]. This framework is

achieved through simulated annealing, a robust and general

random technique that statistically approaches global

optimum among numerous local optima by accepting

worse solutions early on [14]. Developed by Kirkpatrick et

al., simulated annealing can stochastically optimize

parameters for an arbitrary model and ensures a good

solution within sufficient time [14]. The algorithm

randomly samples a feasible solution u, and the energy at

that solution, Eu, is calculated. Another random feasible

solution, v, is sampled, and the energy, Ev, is calculated. In

the case of objective minimization, v replaces u if Ev < Eu ,

of if Ev ≥ Eu, with a probability as a function of temperature,

T:

 If a generated random number between 0 and 1 is less

than Paccept, then v is accepted; if not, u is not replaced. The

higher the temperature, the higher the probability of

accepting a worse solution. Alternatively, at set

temperatures, the higher the difference between the energy

states, the lower the probability of accepting worse

solutions. The algorithm runs for several iterations (or

mutations) at a set temperature value until convergence or

equilibrium is reached, or the temperature reaches 0. The

algorithm is analogous to the annealing process of metals,

where the energy can be substituted for an objective

function. An appropriate cooling schedule must be chosen

to reduce the temperature. Although the most appropriate

cooling schedule which ensures convergence to the global

optimum would be one that follows a logarithmic trend, it

would exponentially increase the search time for large

problems. Here we use a geometric cooling schedule that

follows an exponential trend T : = αT, where α is between 0

and 1. Although this schedule does not ensure convergence

to the global optimum, it searches for a good solution in

sufficient time. After the temperature has reduced, the

algorithm runs for several iterations till T=0 is reached.

This top-down framework creates unique routing

patterns of the scaffold that are constrained to the

caDNAno honeycomb lattice architecture. With a cube as

input from the user, the framework’s capability was

demonstrated with the coating application where the goal is

to encapsulate the surface a user-defined geometry [13].

Since the goal is to encapsulate a given geometry, the

metric of success is based on the presence of gaps. It is

currently difficult to create a method for evaluating the

presence of gaps. As a simple demonstration of the

framework’s ability to encapsulate user-defined

geometries, the framework was tested with a simple cube,

shown in Figure 3.

Figure 3: Scaffold DNA origami cube design generated with the

coating application, where the green points are the inner and outer

constraints. Input cube has side length of 6 nm.

3. Data

Since the simulated annealing algorithm can generate an

infinite number of unique scaffold routing patterns due to

its stochastic nature, we ran the algorithm, using tailored

parameters, 1183 times to generate encapsulated DNA

origami nanostructures given a cube of 6 nm in sidewall

length as input. Images of the top-view of these structures

were manually generated, classified and resized to 200×200

as preprocessing, and were served as the data-set to

evaluate the presence of gaps.

4. Methods

The generated images were initially labeled into the two

classes, class 0 as not fully encapsulated and class 1 as fully

encapsulated, with 400 images in each class (see Figure 4).

The images that were not fully encapsulated had a

3

class 0: 400 images

minimum of three side-walls to images missing only a

single cylinder.

Figure 4: Top-view of image classes. Example of class 0 with a

minimum of three side walls where green squares represent inner

and outer constraints and white dashed square represents location

of smallest gap (top). Example of class 1 with fully encapsulated

cube (bottom).

Table 1 and Figure 5 show the performance comparison

on cutting edge image classification and consider the

accuracy of the fuzzy measure, decision tree, support vector

machine, and neural network methods based on results

from a literature survey [15]. Based on the comparative

analysis in Figure 5, it is evident that CNNs provide a better

accuracy than existing image classification techniques due

to its ability to process images by extracting hidden

features, allow parallel processing, and real time operation

[16]. For such reasons, we created a custom CNN for image

classification.

Table 1: A comparative analysis of different image classification

techniques [15].

Figure 5: A comparison of the accuracy of different image

classification methods [15].

 Figure 6 displays the custom CNN with the following

descriptions where CONV(a, b) means a convolution layer

with a filters and a window size of b × b, POOL(c) means a

pooling layer with a factor of c, FC(a) means a

fully-connected layer with a units, DROPOUT(d) means

drop d/100 neurons, and NORM means batch

normalization [17].

 CONV(16, 3), RELU, NORM, CONV(32, 3), RELU,

NORM, POOL(2), CONV(64, 3), NORM, CONV(128, 3),

NORM, POOL(2), CONV(256, 3), NORM, CONV(512,

3), NORM, POOL(2), CONV(512, 3), NORM, POOL(2),

CONV(512, 3), NORM, POOL(2), DROPOUT(0.40),

FC(1024), RELU, DROPOUT(0.30), FC(1024), RELU,

DROPOUT(0.20), FC(2), SOFTMAX.

class 1: 400 images

4

Figure 6. An overview of the custom CNN frame.

The custom CNN architecture takes images of size

200×200 as input where the convolutional layer runs a

sliding window through the images and convolves the

sub-image with a filters at each step to generate a volume

with larger depth [17]. The pooling layer down samples the

generated volume along the spatial dimension by c factor

[17]. The batch normalization layer normalizes the output

of the previous layer and thus allows each layer to learn

more independently [18]. It is also used here as

regularization to prevent overfitting. The dropout layer

randomly turns d/100 of neurons off in order to boost the

learning of the model [18]. It is also used as a regularization

technique for overfitting prevention.

The following arbitrary parameters were selected for the

CNN: batch size of 20, adam optimizer with a learning rate

of 0.0001 and a decay of 1e-6, binary crossentropy loss,

epoch length of 100, and a validation split of 30%. The

following batch size was selected to reduce oscillations in

the accuracy calculation. Adam was selected because it is a

robust and general optimizer, where the learning rate was

reduced with a time-based decay as the training progressed.

Binary crossentropy loss was selected since we designed a

two-class problem.

In addition, we also implemented the popular pretrained

models of VGGNet and ResNet50 for comparison to the

custom CNN architecture [Fig. 7].

Figure 7. Popular architecture models. VGG (Visual Geometry

Group) architecture (left). ResNet (Residual Network)

architecture (right) [19].

5. Experiments

Experimental results, including accuracy and loss plots

of the custom CNN, VGG16 and ResNet50 are shown here

[Fig. 8-10]. For our custom CNN, the train set and test set

accuracy reach 100% and 73% respectively after 60

epochs. The loss of train set and test set decrease to 0 and

2.6. Both the accuracy and loss trend are reasonable. But

the accuracy is not as high as expected. Considering the

images are relatively simple, we expected the results would

be better. We then tested VGG16 and ResNet50 to see if

it’s because our custom CNN caused the low accuracy. The

test accuracy of VGG16 reaches 86% after 50 epochs,

5

which is better than custom CNN. However, the loss of

validation set increases slowly with increasing epochs. We

could not explain the exact reason, but since the loss

difference is very small on the same scale, we think the loss

is minimized for the validation set. ResNet50 gives a small

improvement of accuracy to 78%, and a low loss for the test

set.

Figure 8. Accuracy and loss vs. number of epochs for custom

CNN.

Figure 9. Accuracy and loss vs. number of epoch lengths for

pretrained VGG16

Figure 10. Accuracy and loss vs. number of epoch lengths for

pretrained ResNet50.

6

Although we saw improvements from VGG16 and

ResNet50, the accuracies did not fit our expectations.

Considering both VGG16 and ResNet50 are excellent deep

neural networks, we reason that the low accuracy problem

is caused by our dataset, the images. As mentioned in

methods dataset section, we manually classified our images

to two different classes, class 0 as not fully encapsulated

and class1 as fully encapsulated. However, in class 0, there

are a group of images (~100) that are not fully

encapsulated, but with very small gaps, as shown in Figure

4 with the white dashed block. These kinds of images are

hard to differentiate from fully encapsulated ones. We think

these images cause the deep neural networks to misclassify

them to the fully encapsulated class (1). To prove our

hypothesis, we discriminated the big gaps and small gaps in

class 0, and reclassified our dataset into three classes, class

0 as not fully encapsulated with big gaps, class1 as not fully

encapsulated with small gaps and class 2 as fully

encapsulated (Figure 11).

Figure 11. Dataset reclassification: class 0 as not fully

encapsulated with big gaps, class 1 as not fully encapsulated with

small gaps and class 2 as fully encapsulated.

We tested the dataset with new classification using the

custom CNN. Results are shown in Figure 12. The accuracy

for both the train set and test set reach 100% quickly. The

losses are close to 0 after 30 epochs. Th results show that

the custom CNN can classify our dataset correctly after

reclassification.

Figure 12. Accuracy and loss plots of custom CNN using

three-class dataset.

6. Conclusions

To sum up, all three deep neural networks, the custom

CNN, VGG16 and ResNet50, were able to classify the

top-view images of scaffold encapsulation of a given

geometry that is generated from simulated annealing with

70% - 90% accuracy using initial classification, where only

fully encapsulated and not fully encapsulated were

differentiated. After a finer dataset classification that

separated not fully encapsulated structures with small gaps

and big gaps, the custom CNN was able to reach near 100%

accuracy of classification for validation set. Our results

show that the classification of dataset is critically important

for the performance of the deep neural networks. Our

propose that aims to classify the quality of encapsulations

from simulated annealing algorithm is successful. In future,

reinforcement learning can be applied for searching,

optimizing the parameters in simulated annealing, and

finding the optimal encapsulation of a given geometry. By

combining simulated annealing and deep learning,

top-down design and manufacturing of DNA

7

nanostructures with custom geometries will more

opportunities to the community.

7. Contributions

Babatunde generated the dataset. Both Babatunde and

Wang contributed to coding the custom CNN, adjusting its

parameters and writing the report.

References

[1] Liu, Y., Kumar, S., and Taylor, R. E., WIREs Nanomedicine

and Nanobiotechnology, 10(6):e1518, 2018.

[2] Tørring, T. and Gothelf, K. V., F1000Prime Reports,

5(14):1-4, 2013.

[3] Rothemund, P. W., Nature, 400(7082):297-302, 2006.

[4] Castro, C. E. et al., Nature Methods, 8(3):221-229, 2011.

[5] https://openwetware.org/wiki/Example_page_from_VCCRI

_BIOMOD_wiki

[6] Selnihhin, D. et al., ACS Nano, 12(6):5699-5708, 2018.

[7] Thubagere, A. J. et al., Science, 357(6356):eaan6558, 2017.

[8] Douglas, S. M., Bachelet, I., and Church, G. M., Science,

335(6070):831-834, 2012.

[9] Douglas, S. M. et al., Nucleic Acids Research,

37(15):5001-5006, 2009.

[10] Benson, E. et al., Nature, 523(7561):441-444, 2015.

[11] Veneziano, R. et al., Science, 352(6293):1534-1534, 2016.

[12] Huang, C.-M. et al., https://doi.org/10.1101/2020.05.2

8.119701, 2020.

[13] Babatunde, B., Cagan, J., and Taylor, R. E., Applied

Sciences, 2021, in preparation.

[14] Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P., Science,

220(4598):671-680, 1983.

[15] Gavali, P. and Banu, S., Academic Press, 99-122, 2019,

https://doi.org/10.1016/C2018-0-00906-8.

[16] Wu, H. and Prasad, S., IEEE Transactions on Image

Processing, 27(3):1259-1270, 2018.

[17] Padmanabhan, S., Stanford University, 1-8, 2016.

https://web.stanford.edu/class/cs231a/prev_projects_2016/e

xample_paper.pdf

[18] Dwivedi, R., Analytics India Magazine, 1, 2020,

https://analyticsindiamag.com/everything-you-should-know

-about-dropouts-and-batchnormalization-in-cnn/.

[19] Basaveswara, S., K., Towards Data Science, 1, 2019,

https://towardsdatascience.com/cnn-architectures-a-deep-di

ve-a99441d18049

https://doi.org/10.1101/2020.05.28.119701.
https://doi.org/10.1101/2020.05.28.119701.
https://doi.org/10.1016/C2018-0-00906-8
https://web.stanford.edu/class/cs231a/prev_projects_2016/example_paper.pdf
https://web.stanford.edu/class/cs231a/prev_projects_2016/example_paper.pdf

